

Energy of a Fluid

Since, a fluid has inertia therefore it possess three types of energies.

✓ Kinetic energy:

If any fluid of mass 'm' is flowing with velocity 'v' then,

$$K.E = \frac{1}{2}mv^2$$

K.E. per unit volume =
$$\frac{\text{K. E.}}{\text{volume}} = \frac{1 \text{ mv}^2}{2 \text{ Vol.}}$$

K.E. per unit volume =
$$\frac{1}{2}\rho v^2$$

✓ Potential energy:

The potential energy of a fluid of mass 'm' at a height 'h' above the surface of earth will be

$$P.E. = mgh$$

But P.E. per unit vol. will be

$$\frac{P. E.}{\text{volume}} = \frac{\text{mgh}}{\text{Vol.}} = \rho \text{gh}$$

Where

$$\rho$$
 = density of fluid

✓Pressure energy:

The force on the piston = pressure x area

$$F = P \times A$$

Work performed to push the liquid inside the tube,

W= F x displacement

$$W = (P \times A) \times d$$

$$W = P \times \Delta V$$

(This work is called pressure energy)

$$W/\Delta V = P$$

Pressure energy per unit volume is equal to "Pressure"

Total energy:

Total energy of flowing fluid

$$E = K.E. + P.E. + Pressure energy$$

$$E = \frac{1}{2}mv^2 + mgh + P \times \Delta V$$

Total energy per unit volume = $\frac{E}{\Delta V}$

$$\frac{E}{\Delta V} = P + \frac{1}{2}\rho v^2 + \rho gh$$

Note: These tree types of energy are interconvertible

$$E = K.E. + P.E. + Pressure energy$$

$$E = \frac{1}{2}mv^2 + mgh + P \times \Delta V$$

Total energy per unit volume

$$\frac{E}{\Delta V} = P + \frac{1}{2}\rho v^2 + \rho gh$$

 P_2

Bernoulli's Theorem

In case of streamline flow of ideal fluid through a tube of non-uniform cross section, the **total energy per unit volume remains** constant at every point in the tube.

$$P + \frac{1}{2}\rho v^2 + \rho gh = constant$$

Note: It is another form of law of conservation of energy.

